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ABSTRACT

The general nonlinear differential equations describing the interaction
of finitely deformable, polarizable, heat conducting intrinsic n-type semi-
conductors with the quasi-static electric field are transformed from the un-
known present coordinate description to the known reference coordinate descrip-
tion, which is the form needed in the treatment of problems. From the dif-
ferential form of each balance equation in the reference coordinate descrip-
tion, the associated integral form is obtained. The resulting integral forms
turn out as expected with the exception of the one due to the balance of
linear momentum for the semiconducting fluid, in which an important change in
and simplification from the form used heretofore is introduced. More import-
antly, the previous existing integral form of the equation of the balance of
energy in the present coordinate description is transformed to a different
form, which is equivalent to the original form only when the field variables
are differentiable. The revised integral form in the present coordinate
description is then transformed to the reference coordinate description,
from which an energetic jump condition across a moving non-material surface
of discontinuity is obtained which is consistent with all the other jump
conditions obtained from the other integral forms. In addition, the expres-
sion for the quasi-static electric Poynting vector in the reference coordinate

description is determined.




1. Introduction

In a treatment of the interaction of the quasi-static electric field
with a finitely deformable, polarizable, heat conducting, dielectric continuum
a system of rotationally invariant differential equations and jump conditions
were derivedl. First, the differential equations were obtained from a
systematic application of the laws of continuum physics to a well-defined
macroscopic model. Then, the integral forms obtained from the respective
differential forms were taken to be valid across moving surfaces of discon-
tinuity even when the differential forms from which they were obtained did
not hold because of the lack of differentiability across the singular surface.
This is a standard, perfectly reasonable procedure for obtaining the governing
integral forms for an interacting continuum. The jump conditions across moving,
not necessarily material, surfaces of discontinuity were then obtained from
the respective integral forms. The resulting integral forms and associated
jump conditions were referred to the unknown present (spatial) coordinates
of material points whereas it would have been more useful to refer them to
the known reference (material) coordinates of material points. However, this
is not a severe limitation since it is a straight-forward matter to transform
from present to reference coordinates of material points using well known
relations. Nevertheless, although in the work1 in question the appropriate
reference forms of the jump conditions for the balance of mass, linear
momentum, charge and entropy may readily be obtained in the aforementioned
manner, the reference form of the jump condition for the balance of energy
may not be obtained directly from the equations presented in Ref.l. 1Indeed,
although the integral form of the equation of the balance of energy is not
incorrect, the present form of the jump condition for the balance of energy

presented therel is not directly useful for application to problems concerning




the propagation of surfaces of discontinuity and, hence, is not actually
correct. This dilemma is a consequence of the fact that the integral form of
the balance of energy is not unique because the differential form can have
terms added to it which vanish at each volumetric point and yet give surface
terms. Since the field variables are not differentiable when the jump condi-
tions are obtained from the integral forms, the different integral forms
yield different jump conditions which are not equivalent. In a later work2
the treatment was extended from the case of deformable insulators1 to de-
formable semiconductors. In the latter work2 although an integral form of
the equation of the conservation of energy is written, the associated jump
condition is not because the authors were aware of the problem involved.

In this paper the proper revised differential form of the equation of
the conservation of energy is found for the more general case of the deformable
semiconductor. From the revised differential form the appropriate integral
form of the equation of the conservation of energy is obtained in both the
present and reference coordinate descriptions, from which the required correct
energetic jump condition in the reference coordinate description is obtained.
One by-product of this work is the determination of the proper expression for
the quasi-static Poynting vector in the reference coordinate description.

In addition to the foregoing a new integral form of the equation of the
conservation of linear momentum for the free-electronic charge continuum is
introduced. The new form is better for obtaining jump conditions because
certain assumptions that had to be made in obtaining jump conditions from the

]

: 2 - s
previous form need not be made with the present form. Moreover, the jump
condition at a material surface of discontinuity resulting from the present

form will be different from and more convincing than the one obtained from

the previous form,




2. Basic Equations

2 ; >
It has been shown that a system of general nonlinear rotationally in-
variant differential equations for deformable intrinsic n-type semiconductors

; ; 3
& can be written in the form

S ES e
(Tij o+ Tij -p éij),i = pdvj/dt, (2.1)
. A/t + ]i’i =0, Di,i =u, (2.2)
e e
= + = -
B/ = @+9 )’i, Bij=-®,, (2.3)
8 4 e e 8 S e ‘s
¥y =Wy B, vi), U Vs, A 2.4)
T}?s.=€E.E.—l€EE6.., (2.5)

ij oij 2 Yonkikiij

ec e
WE v, - v,) - T g * p0dl/dt , (2.6)

S ES . 2
where Tij and '1‘ij denote the symmetric parts of the usual mechanical and

; : e
free-space Maxwell electrostatic stress tensors, respectively; vi, Vj’ Ei'
Ei’ Di’ ji and qj denote the velocity of the free electronic fluid, velocity

of the solid, local material electric field exerted on the free electronic
fluid, Maxwell electric field, electric displacement, electric current and
heat flux vector, respectively; ue, pe, Ps @, ¢°, W, ur, 6 and T denote the
free electronic charge density, free electronic pressure, mass density,
electric potential, free electronic chemical potential, net charge density,
residual lattice charge density, temperature and entropy per unit mass,
respectively; and eo is the permittivity of free space. The motion of a

point of the solid is described by the mapping
¥ yi(XL’t), {8« 7)

where v, denotes the present coordinates of material points and XL’ the

reference coordinates, and t denotes the time. Clearly, we have




v, = ayi/at. (2.8)

In (2.1) - (2.8) we have used Cartesian tensor notation, the summation con-
vention for repeated tensor indices, the convention that a comma followed by
an index denotes partial differentiation with respect to a coordinate, and
the convention that capital indices refer to reference coordinates and lower
case indices to present coordinates of material points.

The associated constitutive equations take the form

s _ oX | X
Tig T P¥ 50,0 Pi T %P T MYy LW 2.9
KL L
€ v, = S, N=- dx/38 = 2.10
b T 0 93 T Yy g St
2
p° = w%)%e®/u®, ¢ = 3use®) /s, (2.11)
where
e e e e
X’ = X(EE’WL)G) ) K)K & Qx(p" ’wL’EICL,WL’ e) ’
e _tienie H e e
e =¢ @), L = Lx(e,w“ W B W, 00, {2.12)
and
_ 1 .k e _ e
B =7 Wi i1 ) W = ¥y LBy = Yi,1Fs o

In addition, we have the conservation of mass, which may be written in the

form
pPI =0, (2.14)
where %)isthe reference mass density and
J = det yi,K' (2.15)

At this point we note that the above system of equations is referred
to the present coordinates, which are unknown, and, as a consequence, it is
advantageous to refer them to the known reference coordinates. To this end,

analogous to the Piola-Kirchhoff stress tensor FLj’ which is defined by




(2.16)

we define the reference electric displacement vector JE by4'5

(2.17)

2

niDidS= NﬁﬁLdSo

where dso and NL denote the magnitude of and unit normal to an element of

area in the reference configuration, which has magnitude dS and unit normal n,

; : . 6
in the present configuration. By virtue of the well-known relation

#,d88= 3X_ N dS_, (2.18)
ol (o]

L,i L

from (2.16) and (2.17), in the usual way, we find

s R A = D :
Lj JxL,l ij ﬁi JxL,l i ks

By defining the reference free-space Maxwell electrostatic stress tensor MLj

and free electronic pressure tensor Gij in a similar way we find

ES e e
M= JXL,iTij 5 G’Lj = JXL’jp : (2.20)

Now,using (2.19) and (2.20) with (2.1) and (2.2)2 and employing (2.14) along

with the well-known identity7

(JXL,i),L e (2.21)
we obtain
Wy 0y = éf;j)’L = p v /at, (2.22)
,9L’L =i, (2.23)
where
o= Ju. (2.24)

Equation (2.22) is the Piola-Kirchhoff form of the stress equations of motion

for the combined deformable semiconducting continuum and Eq. (2.23) is the




b &

E ~uf\

reference form of the charge equation of electrostatics. From (2.3), the

chain rule of differentiation and (2.13)3, we obtain
e e
W, - (@ + @ ),L (2.

which is the reference form of the equation of the conservation of linear

momentum for the free electronic charge continuum.

In order to refer the conservation of total electric charge to the known

reference configuration XL instead of the unknown present configuration b
to which it is referred in (2.2)1, we write

T
Ji_ji l““viy (2.

the substitution of which in (2.2)1 along with the aid of (2.24) and the

well-known relations

d/at = (/3t) + v 3/dy, , Vi, = J'ldJ/dt, (2.

k, k

yields

3y ¢ 5 J'ldi/at =0. (2.

Now, we define the reference electric current vector gL by
« 7 e
nijidS- NLngSO, (2.
which with (2.18) yields
= s/
s W 2.
from which with (2.28) and (2.21) we obtain

b1 * di/dt = 0, (2.

which is the reference form of the conservation of total electric charge.
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Analogous to the foregoing, we now define the reference heat flux

vector QL by

.q, ds = 4 ’
n.q; NQ s _, (2.32)

which with (2.18) yields

0 = JX_ 9. . (2.33)

Substituting from (2.10)1, (2.13) and (2.33) into (2.6) and employing (2.14)
and (2.21) we obtain

- w_Q

Mo L = P o dlat, (2.34)

L’
where

o= . (2.35)
Equation (2.34) is the reference form of the dissipation equation. The
associated reference form of the Clausius-Duhem inequality takes the form

Q Q_6
an (_L) =_1._[L I —-eee]_ i
Poge "NB/aTT 8L ¢ TERE|=RS =9, (2.36)

where I' is the (positive) rate of entropy production.
From (2.4)1, (249), 2 10J (20 19) (2026, (2.30), (2.33) and

(2.35) the pertinent constitutive equations can be written in the form

oK " X
EL i =NpRys -, & =¢ 8 - —— (2.3}
Lj o j,M BELM L oL o awL
gL w QL, QK JLK, (2.38)
where
= 2
6L JXL’ By (2.29)

and the constitutive equations in (2.11l) and (2.10)2 remain unchanged along

with the expressions for X, Q;, ¢® and Ly in (2.12) and, of course, (2.5)

and (2.20) are to be employed. From (2.3)2 and (2.13)2 we note that




The integral forms of Egs. (2.22), (2.23), (2.25), (2.31) and (
referred to the known reference coordinates of material points, whi
prime interest to us here, clearly may be written
e
+ - = —
‘[ H ey * % QIe.j)dso at Rary T, s

S v
o o

f NL.&Lds°= f udvo s
S ¥

le = e
J‘“‘Ldvo fNL((‘p+w)dso’

v
o o
Jﬂ Rg & =~ S f Fav
LL o dat o’
s v
o o
N_Q 0
ij‘ L°L s J’ l[QL L e] .
3t poﬂdV°+ 5 dSo- 5 ——1—9 + ngL dVozo.
v S v
o o o

The integrel form in (2.43) is diffecrent than the equivalent equati

% 8, Equation (2.43) is a better for

has been employed heretoforez’
obtaining the jump condition for the free-electronic charge continu
both material and nonmaterial surfaces of discontinuity. Since Eq.
does not contain the free electronic charge density ue explicitly,

assumption on the boundedness of ue need be made in obtaining jump
and, as a consequence, the resulting jump conditions are independen
Maxwell tensor and the associated assumptions that have been used p
From the integral forms in (2.41) - (2.45), jump conditions across m
necessarily material surfaces of discontinuity can readily be obtai

suitable assumptions. For example, at a nonmaterial surface of dis




we assume that all volumetric density terms remain bounded and in the usual

way obtain

e
N gl == Ugholvyl, N 01 =0, f9+9] =0, (2.46)
NLLFL!. = Un.{“'l’ NL—[-QL/e,]. - UNpo'ET]l 20, (2.47)

; . A : : .
where UN is the intrinsic” velocity of the singular surface, we have introduced

< - = +
the conventional notation [a] for a - a and

oy mE W, - 9::.' ; (2.48)

Since E, remains bounded, we have

[©] = 0, (2.49)
and, hence, from (2.46)3 we obtain
: e
% ~[cp l=0. (2.50)
E The integral form of the equation of the conservation of energy and

associated jump condition has not been discussed here because the existing
integral form has to be revised in accordance with the detailed discussion

presented in the next section.

3. Integral Form of the Balance of Energy

In this section we consider the equation of the conservation of eneray
for the deformable intrinsic n-type semiconductor, the integral form of which
may be written

e i , - BE
J‘[ pvv+pe+p,e 2eEE]dV jn Tjjpvi

e e e 1
- - - + + -
E h, q. (v, V,)LL € V.PkEk Vi, 2 € EkEk’ as , (3.1)

where Pk denotes the electric polarization per unit volume and for the quasi-

static electric field10




W

hi = cp[(aDi/at) + ji] A (3.2)

in MKS units. Equation (3.1) is the extension of Eq. (5.4) of Ref.l for the
deformable insulator to the deformable intrinsic n-type semiconductor and is
also Eq. (4.14) of Ref.2 when reduced to the special case of the intrinsic
n-type semiconductor in a quasi-static electric field. Since the total stress
iensor Sij appears in the equation of the conservation of linear momentum for

the combined continuum, i.e., (2.1), (2.22) and (2.41), we write

E e
= T -
sij ij * Tij p 6ij . (3.3)
where
E 1 ] S
= - — € = -
Ti3 [DiEj 2 SBkBkligly TigT iy BBy sl
and since
DIt =Sl P (3.5)
T oi 5t
from (3.3) - (3.5) and (2.5) we note that in addition
B, =, b S (3.6)
ij ij ij bl

We now substitute from (3.3) with (3.4)., (2.4) 2.2y, (2.26), (8.2) and
l‘ 1’ b

(3.5) into (3.1) to obtain

a f1i ee 1 ] [
—_— i —_— + + —_— = |
2t U3 pvkvk pe +L € + > eoEkEkJ av I niLsijvj
v D S
e., o ; ]
= D;E v, +E.D.v. = T e e o T . 3.
DlEJvJ EJDJVl LR e Py =~ 9 ds (B7)

Now, consider the term

«E,D.V, = D.E Vv, = .
‘inl[ Pa¥y DlE]VJ] ds =t (3.8)

the application of the divergence theorem to which yields

t = f LB DV, = DJE V.l o aV, (3. 9)
Y

A 13373 ,1

o e Py
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12.

Moreover, appropriate differentiation and the substitution of (2.3)2 enables

the integrand in (3.9) to bhe written

E.D .V
{ J

" DiEjVj)’i=" [CP(Djvi = Divj) 2 IR Tt (3.10)

)1 )J
since

(b:v. = Bovg) =0, (3.11)
J 2 13,1

Substituting from (3.10) into (3.9), employing the divergence theorem and
(2.2)2, we obtain

t=- J n,o{D, .v. +D.,v. . ~D.v, . - uv,)ds, 3.12)
J Ll TR T R T S Ll (

the substitution of which into (3.7) yields

& [l %% + 3 ] [ (

— == =le = o +

s é S PV v, tPE+L e + 3 € EE AV n, Sijvj © Di,jvj
oD

i ; €Ly
1Vj,3 Djvl,J uvl > 3 P 3 ql as , (3.13)

in place of (3.7). Equation (3.13) is another integral form of the egquation
of the balance of energy referred to present coordinates, which is entirely
equivalent to (3.7) when the field variables are differentiable. However,
when the field variables are not differentiable, the two integral forms
obviously are not equivalent.

Equation (3.13) is the appropriate form for obtaining the energetic
jump condition in the reference coordinate description while Eq. (3.7) is not.
To see this note that the material time derivative of the reference electric

displacement vector ji defined in (2.19)2 may be written
d

oD,
- = JX + v.D - D.v

i
§ [l —— By o Ve e e N .D.] 3.14
at L L,il 3t Sdyd 3 i oo ( )

where (2.7)2 and the well-known relation

(d/c’it))(K j=- X Vi an (3. 15}

y
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have been employed in obtaining (3.14) from (2.19)2. Now, substituting from
(3.14), ©.6), (2.14), (2.16), (2.18), (2.20), (2.26), {2.29), (2.32), (2.35)

and (2.48) into (3.13), we obtain

5% + 1 Jav,= [,
dtJ [2 Pl TR AR e + 2 e R BTN . N 75V

e
(dt L & egL) T QL] 9B s (3.36)

which is the integral form of the balance of energy in the reference coordi-
nate description we have been after. An examination of (3.16) reveals that
the quasi-static electric Poynting vector referred to the known reference

coordinates takes the form

/d )
= (_
hL (p\dt 'BL & QL ’ c.17)

in MKS units., The energetic jump condition across moving non-material
surfaces of discontinuity may readily be obtained from (3.16) by assuming

that all volumetric density terms remain bounded with the result

e s
N bis% - B c 9 -Gl 0p l0, Lo 25

where hL is given in (3.17) and

i po€ Lo
Q= 7 ViV + e + 5 + - E E (3.19)

It should be noted that the jump condition in (3.18) is consistent with all
the other jump conditions appearing in Sec.2, while the jump condition
obtained from (3.1) [or (3.7)] would be inconsistent with the jump condition

in (2.46)lin most cases.
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